

1 Detecting In-Person Conversations in Noisy Real-World 2 Environments with Smartwatch Audio and Motion Sensing 3

4 **ALICE ZHANG**, CALLIHAN BERTLEY, DAEWEI LIANG, and EDISON THOMAZ, The University
5 of Texas at Austin, USA
6

7 Social interactions play a crucial role in shaping human behavior, relationships, and societies. It encompasses
8 various forms of communication, such as verbal conversation, non-verbal gestures, facial expressions, and
9 body language. In this work, we develop a novel computational approach to detect a foundational aspect of
10 human social interactions, in-person verbal conversations, by leveraging audio and inertial data captured
11 with a commodity smartwatch in acoustically-challenging scenarios. To evaluate our approach, we conducted
12 a *lab* study with 11 participants and a *semi-naturalistic* study with 24 participants. We analyzed machine
13 learning and deep learning models with 3 different fusion methods, showing the advantages of fusing audio
14 and inertial data to consider not only verbal cues but also non-verbal gestures in conversations. Furthermore,
15 we perform a comprehensive set of evaluations across activities and sampling rates to demonstrate the benefits
16 of multimodal sensing in specific contexts. Overall, our framework achieved $82.0 \pm 3.0\%$ macro F1-score when
17 detecting conversations in the lab and $77.2 \pm 1.8\%$ in the semi-naturalistic setting.

18 **CCS Concepts:** • **Human-centered computing** → **Ubiquitous and mobile computing**.

19 Additional Key Words and Phrases: Multimodal Classification, Audio Classification, Sound Sensing, Motion
20 Sensing, Gesture Recognition, Non-verbal Communication, Wearable, Dataset, Smartwatch, Social Interactions,
21 Human Activity Recognition

22 **ACM Reference Format:**

23 Alice Zhang, Callihan Bertley, Dawei Liang, and Edison Thomaz. 2025. Detecting In-Person Conversations in
24 Noisy Real-World Environments with Smartwatch Audio and Motion Sensing. 1, 1 (March 2025), 25 pages.
25 <https://doi.org/XXXXXX.XXXXXXX>

26 1 INTRODUCTION

27 Social interactions play a crucial role in shaping human behavior, relationships, and societies. It
28 encompasses various forms of communication, such as verbal conversation, non-verbal gestures,
29 facial expressions, and body language. Critically, lack of social interaction and loneliness are
30 globally growing public health concerns, especially following the COVID-19 pandemic [39]. Prior
31 research has shown that social isolation and loneliness are comparable to well-established risks for
32 premature mortality, such as obesity and substance abuse [41]. Conventional methods of assessing
33 an individual's social connections rely on retrospective clinician-rating surveys [46] or momentary
34 self-report questionnaires called ecological momentary assessments (EMAs) [36]. Unfortunately,
35 these methods have many shortcomings; they are susceptible to recall biases and often impose a
36 significant burden on individuals. Moreover, these methods may not be appropriate for individuals
37 who suffer from communication disorders, such as those with cognitive or language impairments.
38 Consequently, a passive and universally-accessible method to sense and monitor social interactions

40 Authors' address: [Alice Zhang](#), alice.zhang@austin.utexas.edu; Callihan Bertley, calbertley@utexas.edu; Dawei Liang,
41 dawei.liang@utexas.edu; Edison Thomaz, ethomaz@utexas.edu, The University of Texas at Austin, Austin, Texas, USA.

42 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
43 provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
44 full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
45 Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
46 prior specific permission and/or a fee. Request permissions from permissions@acm.org.

47 © 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

48 ACM XXXX-XXXX/2025/3-ART

49 <https://doi.org/XXXXXX.XXXXXXX>

50 in real-world settings would address these limitations and make a significant, positive impact in
 51 healthcare.

52 In this work, we advance a new computational direction in social interaction sensing that
 53 combines joint acoustic-inertial data to capture two key aspects of human communication: *in-*
 54 *person verbal conversations* and *non-verbal gestures*. Capturing non-verbal communication gestures
 55 is not only novel but highly relevant, since body movements in conversations can provide as
 56 much information as the spoken content itself [5, 33]. Furthermore, prior work focused on social
 57 interaction analysis has not considered this important dimension of social interactions [10, 29, 30,
 58 34, 57, 61]. Additionally, we emphasize the analysis of social activities in acoustically challenging
 59 environments aligned with real-world settings.

60 To increase the practicality of our method, we leverage the rich and unobtrusive sensing capabilities
 61 of smartwatches. These devices are highly compelling for human-centered applications
 62 since they are generally comfortable to wear, socially acceptable, and increasingly ubiquitous.
 63 Importantly, they do not carry the stigma or burden of bulkier, customized sensors. The specific
 64 contributions of this work are:

- 65 (1) A novel multimodal approach to demonstrate the robustness and reliability of conversation
 66 detection in noisy and dynamic environments with acoustic noise levels ranging between
 67 50-70dBA.
- 68 (2) An extensive evaluation of various modeling techniques and fusion methods showcasing
 69 the effectiveness of combining audio and inertial modalities for conversation detection,
 70 especially in environments with significant acoustic noise. We illustrate how multimodal
 71 approaches clarify situations that are confused by a single modality alone, with our frame-
 72 work achieving $82.0 \pm 3.0\%$ and $77.2 \pm 1.8\%$ macro F1-scores for detecting conversations in *lab*
 73 and *semi-naturalistic* studies respectively.
- 74 (3) A thorough set of analyses to illustrate the benefits of multimodal sensing across multiple
 75 contexts and audio sampling rates. To increase privacy protection in acoustic sensing, we
 76 show that the addition of inertial sensing to capture non-verbal conversational gestures
 77 can effectively supplement information lost in downsampled audio.
- 78 (4) A demonstration of the feasibility of our multimodal real-time sensing approach for smart-
 79 watches. We demonstrate that despite the model complexity, we can optimize and deploy
 80 the joint acoustic-inertial model onto a single commodity smartwatch with an average
 81 inference time less than 1s. We also perform a rigorous cost-benefit analysis of the smart-
 82 watch battery life and model performance across various sampling rates of our multimodal
 83 sensing method.
- 84 (5) A new, annotated dataset of social activities from 35 participants split into 11 groups across
 85 *lab* and *semi-naturalistic* settings with synchronized audio features and raw inertial data
 86 collected using an off-the-shelf smartwatch. This dataset enables research in disciplines
 87 ranging from understanding non-verbal communication in busy social contexts to improving
 88 technology interfaces. The data is available [here](#).

91 2 RELATED WORK

92 2.1 Smartwatch Multimodal Sensing

93 The combined use of audio and inertial sensing with commodity smartwatches has been broadly ex-
 94 plored in Human Activity Recognition (HAR) and Human-Computer Interaction (HCI) applications.
 95 Kim *et al.* used accelerometer and acoustic signals to classify 5 daily activities including eating,
 96 vacuuming, sleeping, showering, and watching TV [24]. Similarly, GestEar [6] jointly leveraged
 97

99 accelerometer, gyroscope, and acoustic signals to perform gesture classification on a limited set of
 100 simple gestures centered around snapping, knocking, and clapping.

101 Towards using audio and inertial sensing to recognize a greater number of activities, Siddiqui
 102 and Chan collected a dataset from inertial sensors and microphones as pressure-based sensors
 103 placed at the wrist to recognize a set of 13 daily life gestures and 1 relaxed gesture [50]. From
 104 this data, they hand-crafted and selected the most relevant features to gesture recognition using
 105 a mutual information-based algorithm that were then fed as inputs to classical machine learning
 106 models. Moreover, the ExtraSensory Dataset, collected from both smartwatches and smartphones
 107 of 60 participants, contains an even wider set of activities with user-labeled contexts [53]. The
 108 dataset contains IMU, location, phone state, and phone-recorded audio for classification of user
 109 contexts and activities, such as "at school" or "driving" [54].

110 Additional related work comes from Mollyn *et al.* who presented SAMoSa, a framework for
 111 recognition of 26 daily activities across several indoor environments using inertial signals and
 112 downsampled audio [35]. Likewise, Bhattacharya *et al.* collected synchronized audio and inertial
 113 data from a smartwatch for a set of 23 activities, such as writing and typing, for ADL recognition
 114 in *semi-naturalistic* and *in-the-wild* environments [7]. Liang *et al.* further demonstrated a teacher-
 115 student framework to build an IMU-based HAR model for greater accuracy in recognizing this set
 116 of activities for ADL recognition [28]. During training, the IMU model is augmented with acoustic
 117 knowledge, and once trained, the model only uses motion inputs for inference.

118 Contrasting against this previous body of research on multimodal sensing through a smartwatch,
 119 our work focuses exclusively on the detection of in-person conversations in challenging real-world
 120 scenarios. We leverage inertial data to capture non-verbal behaviors from in-person conversations
 121 to aid in conversation detection when the audio modality alone is otherwise insufficient for the task
 122 due to background sounds. Another difference is that in prior work, participants were instructed
 123 to wear the smartwatch on a specific hand (usually dominant hand) to better capture hand-based
 124 motion patterns of activities [3, 6, 24, 28, 35]. In our studies, however, participants were free to
 125 choose the hand on which to wear the smartwatch.

126 2.2 Social Interaction Sensing

127 Existing methods for sensing face-to-face social interactions can be clustered into two categories:
 128 smartphone-based methods and wearable sensor-based methods.

129 2.2.1 *Smartphone-Based Methods.* Smartphone-based methods utilize sensors in smartphones
 130 to detect and analyze social interactions. SocialWeaver [30] and DopEnc [61] use Bluetooth and
 131 doppler profiling, respectively, with signals transmitted and received between individuals' smart-
 132 phones to determine the proximity between two individuals and infer whether they are engaged
 133 in conversation. Similarly, Crowd++ [59] uses audio collected from smartphones to estimate the
 134 number of speakers in a group. However, these smartphone-based methods do not work as intended
 135 when individuals do not carry their smartphones on body but instead in a purse or backpack, as is
 136 commonly observed in some populations when not actively using the phone [45]. Therefore, the
 137 assumption of these methods that smartphones are primarily carried on-body limits these methods'
 138 scope of application.

139 There are also collaborative sensing methods involving multiple smartphones for social inter-
 140 action analysis, such as SocioPhone [25] and Darwin [34], which use individuals' voice signals
 141 captured by microphones across multiple smartphones. Data from multiple devices are shared
 142 to detect conversational turns as in SocioPhone or perform speaker recognition as in Darwin.
 143 Additionally, Liu *et al.* leverages a smartphone in coordination with multiple on-body inertial

148 sensors to monitor in-person interactions [27]. However, employing multiple devices can restrict
 149 their ease of scalability.

150
 151 2.2.2 *Wearable Sensor-Based Methods.* An alternative to smartphone sensing is using custom
 152 or commercial wearable sensors to infer interactions among individuals. Previous studies have
 153 developed custom hardware devices, such as sociometric badges with infrared sensors (IR) [38] or
 154 active radio frequency identification (RFID) tags [10], worn around the neck with a lanyard. Both
 155 the IR sensor and RFID tag identify instances when two individuals are directly facing each other
 156 within close proximity (<1 meter), indicating that the individuals are engaged in an interaction.
 157 However, these wearable badge-based methods require each individual in the interaction to have
 158 and to wear their own badge. Hence, these methods are not easily scalable to social interaction
 159 sensing in general populations.

160 Rahman *et al.* [44] and Bari *et al.* [3] both developed conversation detection methods from
 161 respiration signals collected by a chest band worn around a speaker's chest. Bari *et al.* further
 162 leveraged electrocardiogram sensors within the chest band and inertial sensors on a wristband
 163 worn on the dominant hand to specifically detect stressful conversations. However, continuously
 164 wearing a chest band for everyday sensing can be inconvenient and interfere with daily activities.

165 Most recently, commodity devices have been used to recognize face-to-face social conversations.
 166 Commercially, Apple AirPods Pro feature a Conversation Awareness mode that automatically
 167 reduces media volume and background noise upon detecting the user's speech [2]. Off-the-shelf
 168 smartwatches have also been used to detect and quantify face-to-face social interactions. In studies
 169 by Liang *et al.* [29] and White *et al.* [57], the microphone of a commodity smartwatch captures
 170 acoustic features that are used to detect instances of in-person conversations. Additionally, White
 171 *et al.* specifically requires collecting voice samples and developing a voiceprint unique to each user
 172 during model training in order to compare the input audio to the pool of known speaker identities
 173 during model inference.

174 Our work differs from these prior works in that it leverages multiple sensors within a single
 175 commodity smartwatch to infer instances of face-to-face conversations. Unlike White *et al.* which
 176 requires customizing the model to specific users, our framework is speaker agnostic. This reduces
 177 the required pre-training overhead and increases user privacy as we do not need to collect voice
 178 samples for speaker identification or verification - voice samples that if misused or leaked could
 179 be leveraged for voice spoofing. The current work also seeks to improve model performance in
 180 especially loud and busy environments, such as restaurants or bars, where background conversations
 181 can be confused for a device user's conversations.

182 2.3 Speech Processing Tools

184 Speech processing tools have recently grown significantly in their capabilities. Speech processing
 185 tasks include speaker diarization, speaker recognition and verification, speech recognition, and
 186 more. Whisper, for instance, is an automatic speech recognition (ASR) system that enables real-
 187 time transcription and translation in multiple languages [16, 43]. *pyannote.audio* is a speaker
 188 diarization pipeline that recognizes who spoke when in a given segment of audio [8]. Meanwhile,
 189 intermediate embeddings, such as i-vectors and x-vectors, extracted from deep neural networks
 190 allow for recognizing speakers [47].

191 While these tools provide state-of-the-art performance for their respective speech tasks, these
 192 tools have limited applicability to analyzing social interactions. Furthermore, non-verbal communica-
 193 tion, such as facial expressions, body language, gestures, and posture, play a significant role in
 194 face-to-face communication and are analyses beyond what current speech processing tools can
 195 provide. Through the addition of inertial data, our work is different than existing speech processing

197 works as we aim to investigate the dynamic and interactive processes involved in social interactions,
 198 namely gestures and body movements. Lastly, we do not employ any natural language processing
 199 on the input audio, which increases the privacy of the user's spoken content.

200

201 3 CONVERSATION MODELING

202 In this work, we aim to sense social interactions, specifically face-to-face conversations. Previous
 203 works in detecting face-to-face conversations have varied in their approach to modeling conver-
 204 sations as there is significant variability in real-world social interactions [55]. Rahman *et al.* [44]
 205 defined conversation episodes to consist of user speaking and listening events while other works
 206 used conversational turn-taking as the fundamental unit of conversations [23, 25, 29]. Not all speech
 207 constitutes conversation; however, there is common agreement in literature that conversations
 208 across languages and cultures are characterized by turn-taking [14, 22, 48]. Thus, we also formulate
 209 this task around conversational turn-taking involving the device user. We approach the task as a
 210 three-class classification problem in line with existing literature and previous work [29]. The three
 211 classes are: 1) conversation, 2) other speech, and 3) background noise.

212 The *conversation* class is defined to be instances where spoken communication with turn-changes
 213 occurs between the participant wearing the smartwatch and at least one other participant in the
 214 study. The *other speech* class is defined as instances where spoken communication does not involve
 215 the participant wearing the smartwatch or foreground speech by the smartwatch user that does not
 216 contain turn-changes. Additionally, this class captures instances of when a participant wearing a
 217 smartwatch stops participating in a group conversation. Lastly, the *background noise* class contains
 218 instances where there is no face-to-face spoken communication in the foreground. That is, this
 219 class captures speech from music, TV, or spoken communications in the background.

220

221 4 DATA COLLECTION

222 To develop and evaluate our approach, we collected a labeled dataset with synchronized audio
 223 and inertial data from a wrist-worn device during social activities in acoustically challenging
 224 environments. This multimodal dataset does not exist in literature, which prompted us to create
 225 one. This dataset can further open research avenues in understanding movement patterns during
 226 face-to-face communication, improving human-machine interaction by recognizing social cues,
 227 and more. This section presents the data collection process realized through two IRB-approved
 228 user studies - one performed in the *laboratory* and one performed in *semi-naturalistic* settings. In
 229 each study session, groups of two to four participants engaged in a set of social activities. We first
 230 present the hardware setup, followed by the data collection and annotation protocols.

231

232 4.1 Hardware Setup

233 We used one Fossil Gen 4 smartwatch and one Fossil Gen 5 smartwatch to collect data from parti-
 234 cipants. Both smartwatches are equipped with a Qualcomm Snapdragon 3100 processor and driven by
 235 Google's WearOS operating system. The smartwatches also have built-in accelerometer, gyroscope,
 236 and microphone sensors. On both watches, we collected audio and inertial data synchronously and
 237 saved data locally on the device using a custom-developed Android application. Lossless audio
 238 data was recorded at a sampling rate of 16kHz and 6-axis IMU (accelerometer and gyroscope) data
 239 was recorded at a sampling rate of 55Hz. We verified that differences in data collected between the
 240 two smartwatches were negligible. Post hoc, we downsampled the audio data into two additional
 241 sampling rates (1kHz and 2kHz) for model development and analysis, as further described in section
 242 5.1 and used in section 7.3. Researchers also recorded a video of each study session in its entirety
 243 for reference during the annotation process.

244

Table 1. Study participant and group details (L: Left, R: Right, M: Male, F: Female, SW: Smartwatch).

Group #	Group Size	Setting	SW User 1			SW User 2		
			Handed- ness	Watch Hand	Gender	Handed- ness	Watch Hand	Gender
1	3	Lab	R	L	M	R	L	M
2	3	Lab	R	L	F	R	L	M
3	2	Lab	R	L	M	R	L	M
4	3	Lab	R	L	M	R	L	M
5	3	SN (lobby)	R	L	M	R	L	M
6	3	SN (lobby)	R	L	M	R	L	M
7	3	SN (lobby)	L	L	F	L	L	F
8	4	SN (outdoors)	R	L	F	L	R	F
9	3	SN (lobby)	R	R	M	R	L	F
10	4	SN (lobby)	R	R	F	R	L	M
11	4	SN (outdoors)	L	L	F	R	L	M

Table 2. Distribution of participants' handedness and watch wrist.

Handedness	Watch Wrist	
	Left	Right
Left-hand Dominant	3	1
Right-hand dominant	16	2

4.2 Data Collection Protocol

We collected data from 11 groups of participants across *lab* and *semi-naturalistic* settings for a total of 35 participants. Each group had a unique set of participants that did not overlap with any other groups. The *lab* setting was a quiet, acoustically-controlled environment. The *semi-naturalistic* settings included the lobby of a busy academic building in which there were background conversations and non-speech sounds from sources such as elevators and rolling utility carts, and an outdoors patio café in which there were background conversations and non-speech sounds from sources such as wildlife and engines.

To better quantify the acoustic characteristics of the data collection environments, we measured the A-weighted, equivalent continuous sound level (L_{Aeq}) of the environments without participant activity using the National Institute for Occupational Safety and Health (NIOSH) Sound Level Meter application on an iPhone, which is compliant with sound level meter standards [11, 51]. L_{Aeq}, measured in decibels, is the average sound energy over a period of time that emphasizes frequencies perceived by humans and is commonly used as a standard metric of noise levels. The *lab* setting without participant activity had an average L_{Aeq} of 50.7dBA. The lobby of the *semi-naturalistic* setting had an average L_{Aeq} of 70.2dBA and the outdoors patio café had an average L_{Aeq} of 60.3dBA. For reference, rainfall is around 50dBA, a normal conversation is around 60dBA, and a washing machine is around 70dBA [13]. These sound levels show the acoustic variations of the data collection environments and specifically highlight the acoustically challenging nature of the *semi-naturalistic* environments.

Each group consisted of two to four participants. Participants were diverse in gender and cultural representation, with participants of American, Chinese, Indian, and Australian backgrounds. This is important as communication styles, especially non-verbal communication, vary across cultures [32]. The details on the composition of the groups are in Table 1 and Table 2.

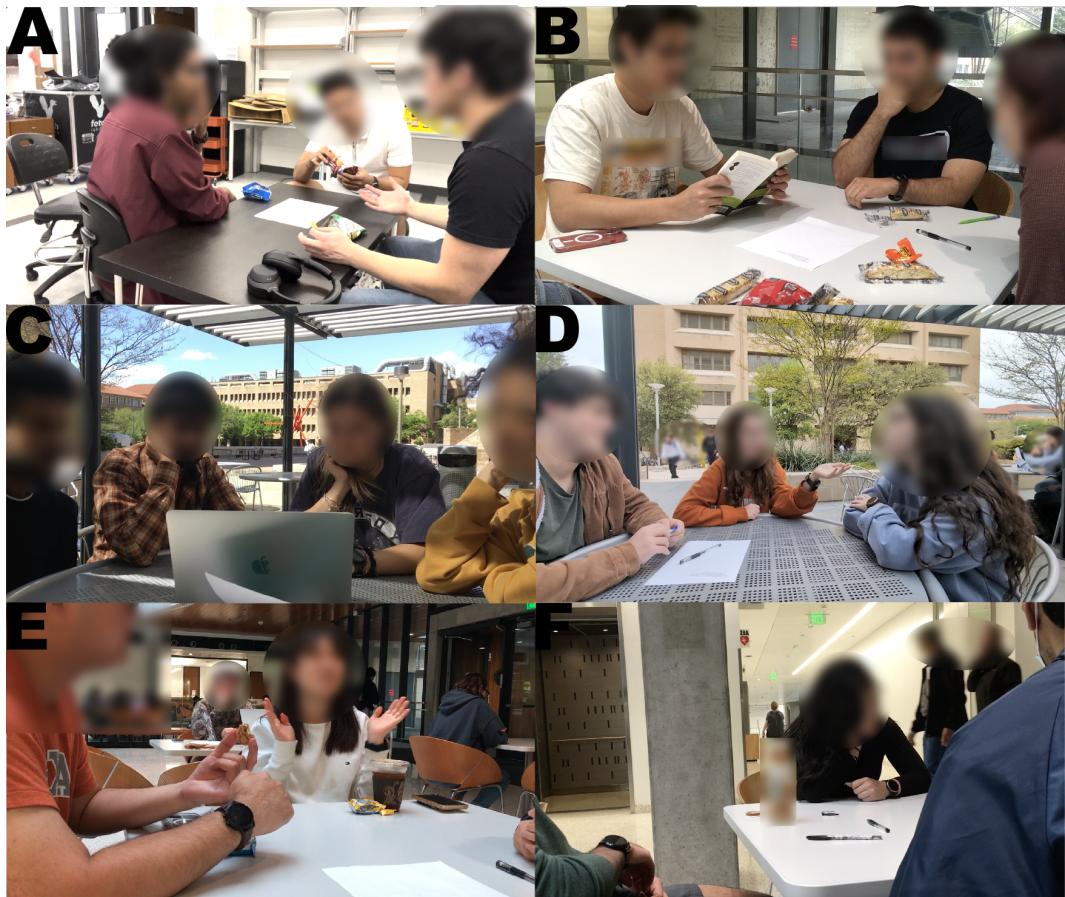
295 Within each group, two participants wore the data-collecting smartwatches. To increase the
 296 ecological validity of the study, the two participants were instructed to wear the smartwatch on
 297 whichever wrist they would normally wear a watch. All group participants clapped at the beginning
 298 of the recording process to synchronize audio and inertial data for data annotation and processing.
 299 Within their groups, a researcher asked all participants to perform the following activities:

300 (1) **Group Conversation:** All participants of the group played a NASA decision-making
 301 survival game while sitting [19]. In the *lab* sessions, participants sat in chairs around a
 302 whiteboard, while in semi-naturalistic sessions, participants sat in chairs around a table. A
 303 participant not wearing the smartwatch was tasked with recording the group's responses
 304 on a whiteboard in the *lab* sessions and on a sheet of paper in the *semi-naturalistic* sessions.
 305 To emulate instances where individuals are situated in group conversations but not actively
 306 participating in the discussion, one participant wearing a smartwatch was instructed to
 307 discontinue speaking partway through the game and only listen.
 308 (2) **Group Conversation While Eating:** All participants were given snacks and instructed
 309 to chat with each other on any topic of their choosing while eating their snacks. Many
 310 social gatherings involve food and take place at restaurants or other venues that can be
 311 acoustically noisy. The purpose of collecting data with this activity was: 1) to simulate these
 312 louder environments in which social interactions occur and 2) to capture hand movements
 313 from eating in order to understand differences in hand movements due to speech-related
 314 gestures versus eating. Similar to activity 1, one participant wearing a smartwatch was
 315 instructed to discontinue speaking partway through the group conversation and only listen
 316 while eating.
 317 (3) **Listening to Music:** Using a speaker, the researcher played music from a variety of musical
 318 genres. All participants listened to the music for 2-3 minutes.
 319 (4) **Reading Out Loud:** Each participant wearing a smartwatch read out loud a random
 320 passage from one of three non-fiction books for two minutes. Then, a researcher played
 321 music different than the music played in activity 3, while the participant continued reading
 322 for another 2 minutes.
 323 (5) **Watching TV:** All participants watched two 3-5 minute video clips from a set of pre-selected
 324 clips from TV shows, talk shows, sportscasts, and documentaries, all of which contained
 325 conversations or narrations. Participants set the volume of the video clip playback, and
 326 conversation between participants was allowed.
 327

328 This set of activities was chosen for being acoustically challenging yet representative of activities
 329 that take place in daily life. In total, we had a total of 35 participants across all study sessions and
 330 collected audio and inertial data from 22 participants. Our annotated dataset contains a total of
 331 14.6 hours of audio and inertial data. Figure 1 shows screenshots of videos recorded during each
 332 study session, highlighting the setting and nature of activities.
 333

334 4.3 Data Annotation Process

335 After data collection, one researcher (one of the paper authors) manually annotated participants'
 336 audio and inertial data. We used ELAN [58] to annotate audio while referencing the recorded video
 337 for ground truth and followed an annotation scheme established in prior works as discussed in
 338 section 3. We initially examined the social event detection problem at a granularity of 10-second
 339 segments. Consequently, we assigned a label, either *conversation*, *other speech*, or *background noise*,
 340 to each 10-second segment of audio and inertial data. For 10-second segments that contained more
 341 than one class of activity, we assigned the segment with the class that occupies the majority of the
 342



373 Fig. 1. Participants from different sessions performing group activities performed in the *lab* and in a *semi-*
 374 *naturalistic* setting. A: Participants having conversations while eating in a *lab* setting. B: Participants reading
 375 out loud in a *semi-naturalistic* setting. C: Participants watching a video in an outdoors *semi-naturalistic* setting.
 376 D: Participants playing a team building exercise in a outdoors *semi-naturalistic* setting. E: Participants having
 377 conversations while eating in an indoors *semi-naturalistic* setting (two participants not shown). F: Participants
 378 playing a team building exercise in an indoors *semi-naturalistic* setting (two participants not shown).

380 10-second segment. For instance, in a 10-second segment that contains 7 seconds of conversation
 381 and 3 seconds of audio from a video clip, the 10 second segment is assigned the *conversation* label.
 382

383 As will be discussed in detail in section 7.1.1, we found that our approach achieves optimal per-
 384 formance at window lengths of 30 seconds through a sensitivity analysis. Therefore, we aggregated
 385 our 10-second labels and applied them to 30-second segments as appropriate following the same
 386 method of assigning the 30-second segment with the label of the majority-duration class. The
 387 remainder of our paper discusses our framework with 30-second window lengths.

388 5 SOCIAL EVENT DETECTION

390 In this section, we present the data preprocessing and models developed for our conversa-
 391 tion detection framework in acoustically challenging environments.

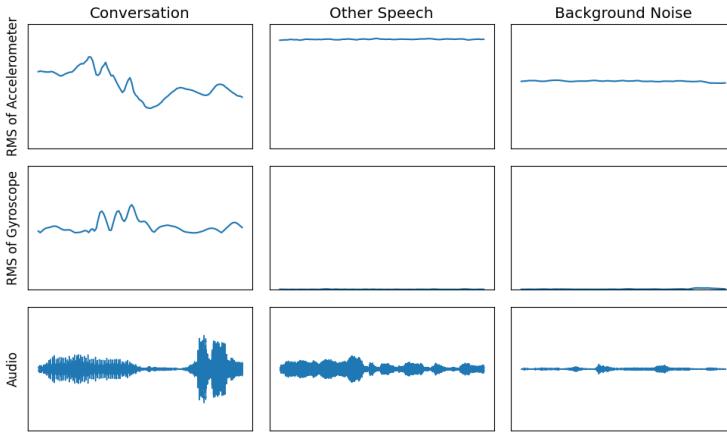


Fig. 2. Example raw acoustic and inertial data of one participant across all three classes.

5.1 Data Preprocessing

5.1.1 *Audio preprocessing.* As described in section 4.2, we collected the input audio at a sampling rate of 16 kHz. To obtain an audio dataset at target sampling rates of 1khz and 2khz, we downsampled the original audio to each target sampling rate. In order to maintain a consistent shape of the audio data throughout the 16kHz, 2kHz, and 1kHz datasets for model development and evaluation, we interpolated the downsampled audio through high-quality FFT-based bandlimited interpolation to achieve a data shape of the downsampled audio identical to that of the original 16kHz audio. Despite having the same data shapes across the 16kHz, 2kHz and 1kHz datasets, speech intelligibility is significantly degraded in the 2kHz and 1kHz datasets.

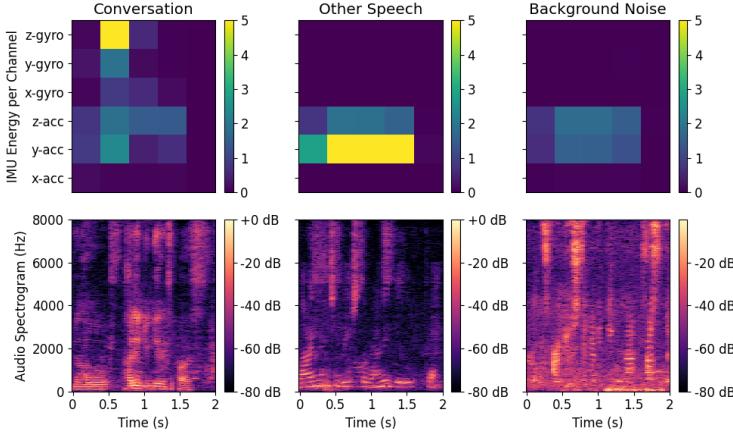
Within each 30-second raw audio segment, we calculated the fast Fourier Transform (FFT) using a window length of 500ms and stride of 250ms with 128 frequency bins inspired by prior works [6, 29]. This yields image-like spectrogram features in a (128x120) shape per 30-second segment, regardless of the target audio sampling rate. We normalized these FFT features before feeding them into the model as inputs.

5.1.2 *IMU preprocessing.* The 6-axis IMU data was collected at a sampling rate of 55Hz. We standardized the values of each IMU axis to have a mean of 0 and standard deviation of 1. Within each 30-second segment, we framed the IMU data into frames of length 2 seconds with a 1 second overlap. This corresponds to 30 IMU frames of shape (6 x 110) within a 30-second segment of data. We then extracted statistical features from the raw IMU data and converted the raw IMU data into energy per channel.

5.1.3 *IMU Feature Selection.* For feature selection on the IMU data, we borrow the idea of mutual information from the field of information theory. The mutual information is a measure of dependency for two discrete random variables and is defined as:

$$I(X; Y) = \sum_x \sum_y P(X, Y) \log \left[\frac{P(X, Y)}{P(X)P(Y)} \right]$$

To calculate the mutual information between any given feature X and the target variable Y, where Y is the label for our three classes, we discretize the values of the feature. To achieve this, for every feature, we created a histogram with 10 bins and mapped each of the feature's values to its respective bin. Once the feature is discretized, we are able to calculate its mutual information,



442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457 Fig. 3. Example inertial energies and acoustic spectrograms of one participant across all three classes. The
458 audio and IMU data are synchronized.

459
460 $I(X; Y)$, with the target variable. The higher the mutual information score between a feature and the target variable, the more the feature and target variable depend on each other.

461 Since energy per IMU channel had a high mutual information score, we further explored using
462 IMU energy distribution over time as a feature. We first transformed the normalized IMU signals
463 into spectrograms by using the Short-time Fourier Transform (STFT). The STFT is a tool for
464 transforming original time-domain signals to frequency-domain signals. The STFT of a time-series
465 signal $x(t)$ is defined as:

$$466 \quad X(\tau, f) = \int_{-\infty}^{\infty} x(t)w(t-\tau)e^{-j2\pi ft} dt$$

467 where $w(t-\tau)$ is a windowing function. By taking the Fourier Transform of the original time-
468 series signal $x(t)$ multiplied by the windowing function, we can localize in time the frequency
469 content of the original signal. We calculated the STFT with 32 frequency bins at a time resolution of
470 400ms. We then calculated the energy per channel from the STFT (i.e. magnitude squared summed
471 over all frequencies) to capture information on hand and wrist movements as they vary throughout
472 social activities. This transformed the raw IMU signals into 30 image-like arrays of shape (6x5) per
473 30-second segment, as shown in Figure 3.

474 5.2 Audio-only Models

475 With data collected in section 4.2, we explored audio models to establish primary results for
476 face-to-face conversation detection using only audio inputs. Previous works have shown that
477 convolutional neural networks (CNNs) when applied to FFT spectrograms of acoustic data are
478 effective at detecting the presence of foreground speech [37]. Additionally, sequence models like
479 long short-term memory networks have demonstrated capabilities in detecting speaker turns [60].

480 By common consensus on the definition of face-to-face conversations, the presence of both
481 foreground speech and turn-taking is required [14, 22, 48]. Therefore, we built upon a state-of-the-
482 art acoustic model that incorporates both the detection of foreground speech and speaker turns
483 into a single architecture [29]. In this acoustic model, the audio spectrograms are passed through a
484 CNN that serves as a second feature extraction module by inferring the presence of foreground
485 speech (Figure 4). These foreground speech embeddings, along with embeddings extracted from
486 the original audio spectrograms, are used as input features to a LSTM network to then capture
487
488
489

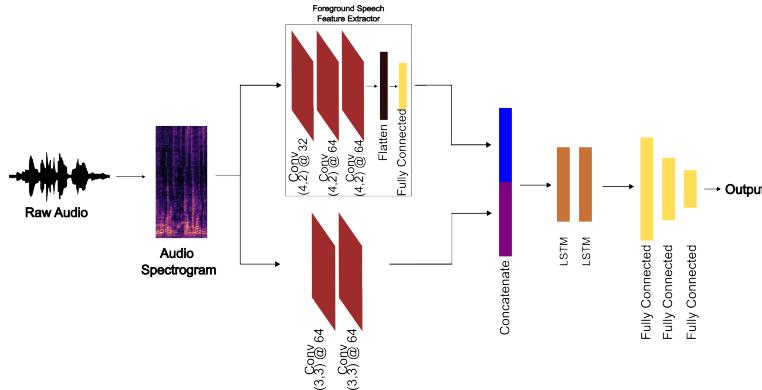


Fig. 4. Architecture of the audio classifier.

the presence of foreground speaker turn changes. Three fully connected layers follow the LSTM network to make a final prediction on the input audio.

5.3 Inertial-only Models

Using motion data, we explored two neural network frameworks to establish an initial performance on our dataset.

5.3.1 *Neural Network Models*. The neural networks were inspired by and built upon the following models: (1) Shallow Convolutional Neural Network with Batch Normalization (SCNNB) [26] and (2) Attend&Discriminate [1]. The architectures of both models are illustrated in Figure 5. For both models, we empirically observed better performance with IMU energy as inputs to the model compared to using raw IMU data and therefore used IMU energy frames as model inputs.

SCNNB: With the long-term vision of deploying a conversation detection model on edge devices with limited computational resources, we first experimented with utilizing a shallow, lightweight CNN. SCNNB is a network that achieves a performance on MNIST and CIFAR10 datasets comparable to deeper CNNs, such as MobileNets and VGGNet, with a shorter training time and fewer parameters. The network requires only a fraction of the time and space complexity required by larger CNNs and has motivated the use of shallow networks for HAR [52]. Therefore, this model is suited for our task and eventual deployment onto edge devices. We leveraged SCNNB containing two convolution layers to extract features within the image-like IMU energy per channel that differentiate hand, wrist, and arm movements of the three target classes.

Attend&Discriminate: The second model we explored is Attend&Discriminate, which has achieved state-of-the-art performance on public HAR datasets. The inputs are fed through a convolutional network. The extracted feature maps are then passed through a self-attention module that learns the interactions between sensor channels in the feature maps. The output feature maps are contextualized with cross-channel interactions. Then, these feature maps are passed through a recurrent neural network to capture temporal information in the sensor channels. Lastly, these sequences pass through a temporal attention module to focus on the most relevant parts of the sequence, because time-steps do not always contribute uniformly to recognizing activities.

We drew inspiration from the original Attend&Discriminate model to guide our model development. The input to the model is the energy for each channel over time, and the network learns interactions between sensor channel energies. We modified the model architecture to remove the recurrent neural network and temporal attention module, as we observed significantly lower model

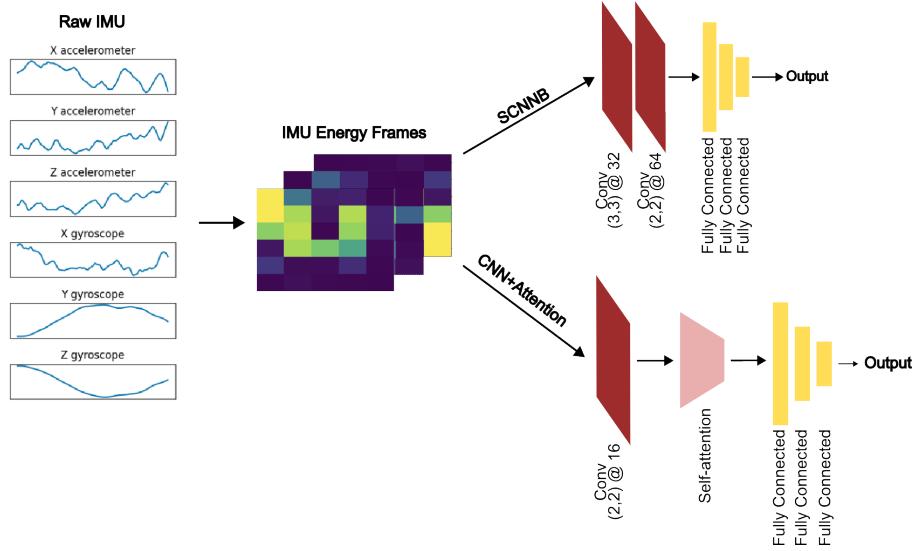


Fig. 5. Architectures of motion models explored in this work. Both models take as input IMU energy distributions over time, which has an image-like form.

accuracy with the inclusion of the sequence network and temporal attention module. We therefore call this model the *CNN+Attention* network.

5.4 Fusion Methods and Models

Standard techniques for fusing data from different sensor types include early-fusion and late-fusion [42]. In early-fusion, data from each modality is concatenated together and the concatenated data is input into the machine learning model. In late-fusion, each modality is learned independently through separate networks and the learned representations are consolidated via an aggregation operation either at: 1) representation-level or 2) score-level. Representation-level fusion can be a concatenation of each modality's embeddings or a cross-modality attention module that captures the inter-modality relationships between each sensor's representations. This fusion is followed by a single classification head for joint training of each modality's network. In score-level fusion, each network is trained separately for each modality and the predicted class probabilities per network are averaged to obtain a final class prediction. The methods are illustrated in Figure 6.

In this work, since the acoustic and inertial data have different sampling rates and are preprocessed differently, simple concatenation of the raw audio and inertial data at the input stage is not possible. Thus, we shifted our focus to late-fusion. We experimented with different methods of fusing the acoustic and inertial embeddings and predicted class probabilities. Specifically, we fused the representations of the customized acoustic model with all six inertial models at different stages in order to better understand the impacts of data fusion for conversation detection.

6 EVALUATION AND RESULTS

Our objective is to analyze and evaluate the multimodal data obtained from a smartwatch for recognizing spoken, face-to-face conversations. By leveraging the dataset collected in section 4.2, we seek to investigate the following questions:

- What degree of information does each modality provide towards conversation detection?

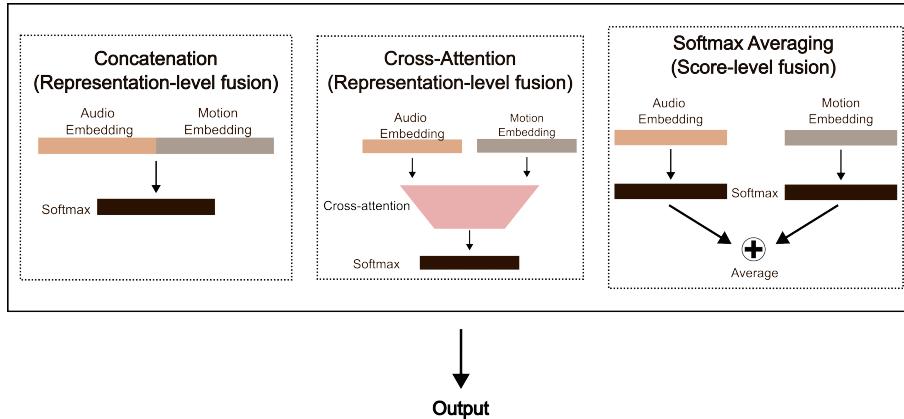


Fig. 6. An overview of fusion strategies explored in this work. Audio and inertial embeddings are first extracted from their respective networks. Representation-level fusion corresponds to combining embeddings of both modalities through concatenation or cross-attention. Score-level fusion through softmax averaging refers to training each modality's network separately and averaging the predicted probabilities.

- To what extent does the fusion of acoustic and inertial data contribute to conversation detection?
- How does a model pre-trained on data collected in a controlled *lab* setting perform on unseen data collected in *semi-naturalistic* settings?

6.1 Evaluation Setup

Conducting the study across both acoustically controlled and noisy environments and allowing participants to choose to wear the smartwatch on the wrist of their choice introduced a significant amount of variability in the acoustic environment and in data collected of participants' non-verbal communication during the activities. With all of the data collected in section 4.2, we performed three sets of evaluations to better understand the role of multimodal data for conversation detection. The three sets of evaluation are as follows: (1) evaluation in the *lab-only* setting, (2) evaluation in the *lab and semi-naturalistic* settings, and (3) evaluation in only *semi-naturalistic* settings on *lab*-trained models. Across all evaluation setups, we report the macro (unweighted) F1-score averaged across all groups used in each evaluation setup. The macro F1-score treats all target classes with equal importance, thereby removing the effects of imbalanced class distribution in the evaluation set. We obtain the 95% confidence intervals for the F1-scores by bootstrap sampling the test dataset 200 rounds.

In the *lab-only* and *lab and semi-naturalistic* evaluations, we explore how well the model generalizes across controlled and noisy settings respectively. We followed a leave-one-group-out (LOGO) cross-validation scheme in which all but one group of participants were used for training and the remaining group was used for testing. This was repeated 4 times through all combinations in the *lab-only* dataset and 11 times through all combinations in the *lab and semi-naturalistic* combined datasets due to having 4 and 7 groups in the *lab* and *semi-naturalistic* settings respectively. To evaluate how well the *lab* dataset generalizes to *semi-naturalistic* settings, in the *semi-naturalistic*-only evaluation we trained models using only *lab*-collected data and evaluated models using only data collected from the *semi-naturalistic* setting. Table 3 shows a summary of results obtained for each model across all evaluation setups.

638 Table 3. Average macro-F1 score for each audio-only, motion-only, and audio plus motion model with all
 639 combinations of fusion strategies evaluated across three evaluation setups on the collected dataset. L-LOGO:
 640 Training on all but one lab session and evaluating on the holdout lab session. L+SN-LOGO: training on all but
 641 one session across the lab and semi-naturalistic sessions and evaluating on the holdout session. SN: training
 642 on all lab sessions and evaluating on all semi-naturalistic sessions.

	Model	Fusion	L-LOGO	L+SN-LOGO	SN
645	Audio	Pure-Acoustic Model [29]	-	74.4 ± 3.3	73.0 ± 2.0
646	Motion	SCNNB	-	51.6 ± 4.1	53.7 ± 2.4
647		CNN+Attention	-	49.6 ± 4.3	50.8 ± 2.5
648		Pure-Acoustic Model + SCNNB	Softmax Averaging	67.9 ± 2.2	61.4 ± 2.3
649			Concatenation	77.5 ± 3.0	78.0 ± 1.7
650	651	Audio+Motion	Self-Attention	62.9 ± 3.8	57.9 ± 2.3
652		Pure-Acoustic Model	Softmax Averaging	62.4 ± 3.6	65.2 ± 2.6
653		CNN+Attention	Concatenation	82.0 ± 3.0	77.2 ± 1.8
			Self-Attention	59.6 ± 4.0	55.6 ± 2.5
					55.8 ± 2.9

654 6.2 Evaluation Results

655 To assess the advantages of fusing acoustic and inertial data, we first evaluated the performance
 656 of both the acoustic and inertial models separately (Table 3 and Table 4). For acoustic-based
 657 classification, the Pure-Acoustic Model [29] achieved a macro-F1 score of $74.4 \pm 3.3\%$ on the *lab*
 658 dataset. Among the motion models, the SCNNB model performs the best, reaching an F1 score of
 659 $53.7 \pm 2.4\%$ on the *lab and semi-naturalistic* evaluation.

660 In combining acoustic and inertial data, we observe an increase in performance across all models
 661 that employ concatenation for representation-level fusion of the acoustic and inertial embeddings.
 662 However, score-level fusion and representation-level fusion through attention did not improve
 663 upon the top single-modality classifier. Fusing the embeddings extracted from the Pure-Acoustic
 664 Model for the audio data and from the CNN+Attention architecture for the inertial data achieves the
 665 best F1-score of $82.0 \pm 3.0\%$ in evaluation in the *lab* setting, representing a 7.6%-point improvement
 666 in F1-score over the best single-modality classifier under the same evaluation setting. In *lab and*
 667 *semi-naturalistic* evaluation, the fused audio model and SCNNB inertial model achieves the highest
 668 F1-score of $78.0 \pm 1.7\%$ yielding a 5.0%-point increase in F1-score compared to the audio-only classifier.
 669 For the *semi-naturalistic*-only evaluation, the fused audio and CNN+Attention inertial model again
 670 performs the best with an F1-score of $68.1 \pm 2.7\%$, which is 3.2%-points higher than that of the audio-
 671 only model. Furthermore, the decrease in F1-score in this evaluation setup shows the limitation of
 672 models trained entirely with data from acoustically controlled environments when evaluated on
 673 *semi-naturalistic* contexts. Since the fused audio and CNN+Attention inertial model outperforms
 674 the fused audio and SCNNB model in two of the three evaluations, we consider the Pure-Acoustic
 675 Model with CNN+Attention through Concatenation to be the best performing multimodal classifier.
 676

677 This improvement in multimodal model performance comes with only a 0.4% increase in number
 678 of model parameters compared to the best audio-only classifier. The classifiers have 2.8K, 763.2K, and
 679 766.5K parameters for the inertial-only (CNN+Attention), audio-only, and multimodal classifiers
 680 respectively. This highlights the lightweight manner in which gestures and body movements
 681 captured by inertial data can be effectively incorporated for conversation detection.

682 Confusion matrices comparing the performance of the single modality classifiers composing
 683 the top multimodal classifier and the multimodal classifier itself are shown in Figure 7. Per-group
 684 performance for the audio (Pure-Acoustic Model), inertial (CNN+Attention), and multimodal (Pure-
 685 Acoustic Model with CNN+Attention through Concatenation) models are shown in Figure 8. The
 686

Table 4. Macro precision and recall. P: precision. R: recall.

Modality	Model	L-LOGO		L+SN-LOGO		SN	
		P	R	P	R	P	R
Audio	Pure-Acoustic Model	77.6 ± 3.4	74.2 ± 3.0	73.5 ± 2.1	73.4 ± 1.9	65.3 ± 2.4	64.8 ± 2.8
IMU	SCNNB	55.8 ± 5.0	51.8 ± 3.5	58.9 ± 2.7	53.5 ± 2.2	50.2 ± 3.4	48.8 ± 3.0
	CNN+Attention	56.0 ± 5.4	49.8 ± 3.5	59.7 ± 3.0	51.3 ± 2.1	48.9 ± 3.0	48.9 ± 3.1
Audio+IMU	Pure-Acoustic Model + SCNNB	79.4 ± 3.6	77.3 ± 3.0	78.2 ± 1.8	78.3 ± 1.7	69.9 ± 2.6	67.6 ± 2.6
	Pure-Acoustic Model + CNN+Attention	82.4 ± 3.1	82.7 ± 2.7	77.7 ± 2.0	77.0 ± 1.8	71.1 ± 2.6	68.2 ± 2.5

True Label	IMU			Audio			Audio+IMU		
	Background Noise	Other Speech	Conversation	Background Noise	Other Speech	Conversation	Background Noise	Other Speech	Conversation
Background Noise	0.22	0.29	0.49	0.79	0.10	0.11	0.83	0.09	0.08
Other Speech	0.06	0.51	0.43	0.07	0.59	0.34	0.07	0.65	0.29
Conversation	0.01	0.18	0.81	0.02	0.13	0.85	0.03	0.13	0.84
Background Noise	Background Noise	Other Speech	Conversation	Background Noise	Other Speech	Conversation	Background Noise	Other Speech	Conversation
Other Speech				Background Noise	Other Speech	Conversation	Background Noise	Other Speech	Conversation
Conversation				Predicted Label	Predicted Label	Predicted Label	Predicted Label	Predicted Label	Predicted Label

Fig. 7. Confusion matrices for inertial-only (left), audio-only (center), and audio-inertial frameworks (right).

lab groups have an average F1-score of $80.0 \pm 3.7\%$ while the *semi-naturalistic* groups have an average F1-score of $75.4 \pm 3.4\%$, though group 7 with the highest F1-score of $82.0 \pm 3.2\%$ comes from the *semi-naturalistic* setting. On the other hand, groups 8 and 11 have the worst F1-scores of $62.0 \pm 3.8\%$ and $65.6 \pm 3.8\%$ respectively. Upon examination of these two groups, we found that the declined performance could be due to two factors. First, both smartwatch users in group 8 and one smartwatch user in group 11 wore the watch on their dominant hand. Since a significant majority of inertial data (17 out of 22 participants) came from individuals' non-dominant hand, the model may have learned to better leverage inertial data generated by participants' non-dominant hand. In watching the recorded videos of each group, we observed that participants gestured less frequently and dramatically with their non-dominant hand compared to their dominant hand. Second, groups 8 and 11 were the only groups whose data collection was outdoors. Acoustic and motion artifacts unique to the outdoors setting in their small sample size could have degraded model performance. Additional data collection outdoors and of participants who choose to wear smartwatches on their dominant hands could help mitigate these issues in the future.

7 DISCUSSION

In this section, we discuss additional evaluations performed across window lengths, activity contexts, audio sampling rates, and dataset environments and the tradeoff between ecological validity and participant handedness during the data collection study.

7.1 Frame Sensitivity Analysis

Frame sizes in HAR impact classification granularity, feature extraction, and model performance. Therefore, we gauged the impact of overall window length and IMU frame size for our novel approach on social interaction analysis in busy environments.

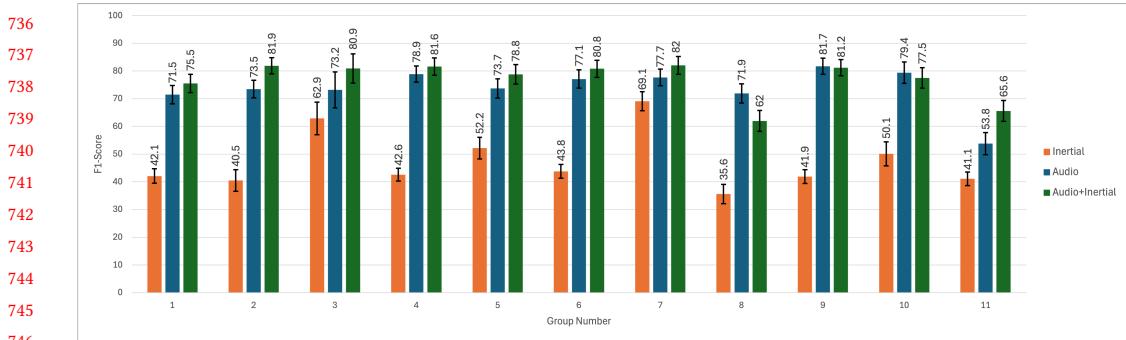


Fig. 8. A comparison of LOGO evaluation results (macro F1-score) across audio, inertial, and multimodal classifiers. The multimodal framework improves upon any single-modality classifier in all but three groups.

7.1.1 *Overall Frame Sensitivity.* Given the dynamic fluctuations characteristic of busy settings, we investigated the model’s performance across window lengths in 10-second intervals spanning from 10 to 30 seconds. Again, we evaluate the model with a LOGO cross-validation on *lab-only* and *lab and semi-naturalistic* data and with an evaluation on *semi-naturalistic* data upon *lab-only* training.

Figure 10 shows that multimodal performance improves as window length increases, with peak performance at a window length of 30 seconds. This is in line with previous works that have found a 30 second window to provide the best tradeoff between classification accuracy and robustness [4, 12, 29, 44]. Although longer windows give better model performance, it reduces the granularity of conversation detection as each window can only be assigned to a single event class.

7.1.2 *IMU Frame Size Sensitivity.* We further assess the impact of IMU frame size in conversation detection with the overall prediction window length fixed at 30 seconds. Towards this goal, we evaluate the inertial-only (CNN+Attention) and multimodal (Pure-Acoustic Model with CNN+Attention through Concatenation) frameworks on IMU frame sizes varying from 1 to 10 seconds in 1 second increments. We use a LOGO evaluation on the *lab and semi-naturalistic* data and report the macro F1-score.

Both inertial-only and acoustic-inertial models perform relatively consistently through the various IMU frame sizes (Figure 10). In the inertial-only model, model performance trends upward with larger frame lengths, achieving a maximum macro F1-score of $51.9 \pm 2.6\%$ at a frame size of 9s. In the acoustic-inertial model, model performance oscillates across IMU frame lengths and reaches a maximum macro F1-score of $77.2 \pm 1.8\%$ at a frame length of 2s. As we are primarily focused on the multimodal model, we proceeded with a 2-second IMU frame length for this classification task.

7.2 Multimodality Benefits by Context

To further understand specific contexts that benefit most from additional non-verbal communication in conversation sensing, we evaluate the single-modality and multimodal classifiers by activity type on the combined *lab and semi-naturalistic* dataset. The specific activity types we consider are: 1) regular conversation, 2) conversation while eating, 3) reading out loud, 4) watching videos, and 5) music in background. For each activity type, we evaluate using LOGO cross validation the top single-modality and multimodal classifiers on all data segments that contain the target activity context and repeat the process for each activity type. For instance, for *music in background*, the evaluation dataset is all data segments across all groups of the study that contained background music. These activity types are not mutually exclusive, except between *regular conversation* and *conversation while eating*.

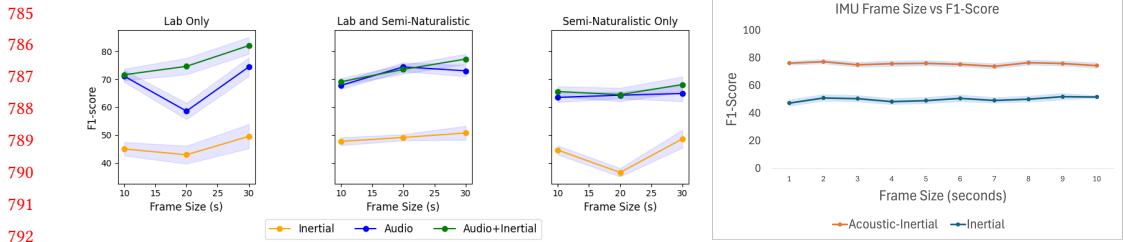


Fig. 9. A comparison of macro F1-scores across all three evaluation setups for acoustic, inertial and multimodal classifiers with window lengths varying from 10 to 30 seconds.

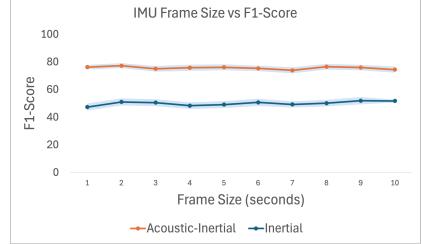


Fig. 10. A comparison of *lab+semi-naturalistic* LOGO evaluation results across inertial and multimodal classifiers with varying IMU frame sizes.

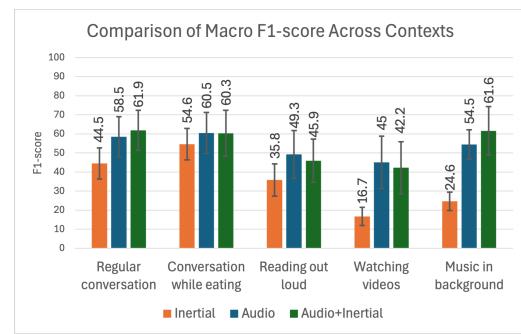
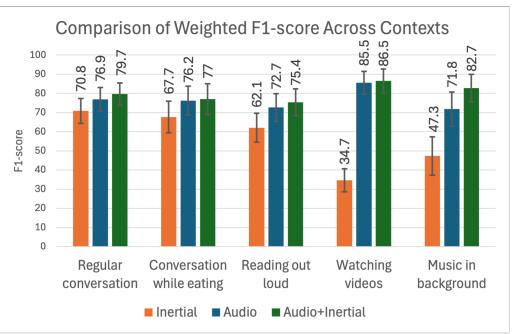


Fig. 11. Macro (left) and weighted (right) F1-scores across conversation activity contexts.

In this context-based analysis, there are significantly more class imbalances in the evaluation datasets. For instance, there are likely to be fewer instances of the *conversation* class while watching videos. Therefore, we report both macro and weighted F1 scores. Macro F1-score evaluates model performance independently of the class distributions in the evaluation set. However, this makes the metric sensitive to rare classes and can be significantly influenced by rare labels. The weighted F1-score addresses this by taking into consideration class distributions.

Across all activity contexts, the joint acoustic-inertial modality improves upon performance (weighted F1-score) of any single modality classifier. The addition of the inertial modality is most beneficial to the *music in background* context, increasing the absolute mean value of the weighted F1-score of the audio-only model by 10.9%. The benefit of the inertial modality makes sense, as people often tap to the beat of the music or move in other ways that are distinct from other social activities. This finding especially can be leveraged for analyzing conversations in settings that often contain background music, such as dining at a restaurant or gatherings at a bar. Overall, this evaluation highlights the effectiveness of joint acoustic-inertial sensing compared to single-modality sensing across a variety of contexts around which conversations are commonly centered.

7.3 Audio Privacy Benefits of Multimodality

With the addition of inertial data to a traditionally audio-only classification problem, we explored whether the information contained in inertial data can be leveraged to reduce the amount of information required in the audio data without sacrificing task performance. The minimum sampling rate for intelligible speech is commonly 16kHz, since most speech occurs below 8kHz [49]. Speech

834 Table 5. Average macro-F1 score for audio and audio-inertial models with the audio sampled at three different
 835 sampling rates (16kHz, 2kHz, 1kHz). L-LOGO: Training on all but one *lab* sessions and evaluating on the
 836 holdout *lab* session. SN-LOGO: training on all but one session across the *lab and semi-naturalistic* sessions
 837 and evaluating on the holdout session. SN: training on all *lab* sessions and evaluating on all *semi-naturalistic*
 838 sessions.

839	Modality	Model	Frequency (kHz)	L-LOGO	L+SN-LOGO	SN
840	Audio	Pure-Acoustic Model	16	74.4 \pm 3.3	73.0 \pm 2.0	64.9 \pm 2.8
841			2	73.2 \pm 3.4	74.1 \pm 2.0	60.5 \pm 1.6
842			1	69.0 \pm 2.3	72.3 \pm 3.7	54.3 \pm 2.5
843	Audio+Motion	Pure-Acoustic Model + SCNNB	16	77.5 \pm 3.0	78.0 \pm 1.7	67.5 \pm 2.5
844			2	69.7 \pm 4.0	75.5 \pm 2.0	64.5 \pm 2.3
845			1	71.9 \pm 3.8	73.8 \pm 1.8	61.7 \pm 2.6
846	Audio+Motion	Pure-Acoustic Model + CNN+Attention	16	82.0 \pm 3.0	77.2 \pm 1.8	68.1 \pm 2.8
847			2	73.6 \pm 3.2	75.7 \pm 2.0	64.8 \pm 2.7
848			1	73.2 \pm 3.7	74.6 \pm 1.8	62.2 \pm 2.5

849 intelligibility decreases as audio sampling rates decrease below 16kHz, with one study showing a
 850 significant drop in intelligibility at a sampling rate of 1kHz [35]. Though more intelligible, audio
 851 sampled at 16kHz comes with privacy concerns about recording the content of a user’s speech. In
 852 contrast, inertial data sampled at 50Hz is less privacy sensitive than audio data [31, 56]. Therefore,
 853 we investigated whether non-verbal communication captured through inertial data can supplement
 854 sub-sampled audio for conversation detection to increase privacy-preservation for the user.

855 For this exploration, we created a sub-sampled audio dataset at 2kHz and 1kHz from the original
 856 audio dataset collected at 16kHz following the process described in section 5.1. We trained and
 857 evaluated the customized audio-only model and the top two combined audio-inertial models
 858 on audio sampled at 16kHz, 2kHz, and 1kHz. We report the macro F1-score for the same three
 859 evaluation setups described in section 6.1, which are: (1) evaluation in the *lab*-only setting, (2)
 860 evaluation in the *lab and semi-naturalistic* settings, and (3) evaluation in only the *semi-naturalistic*
 861 settings using *lab* trained models.

862 As expected, the audio-only model’s performance decreases across all three evaluation setups
 863 as the sampling rate decreases from 16kHz to 1kHz. In contrast, the top performing multimodal
 864 model (Pure-Acoustic Model and CNN+Attention) outperforms the audio-only model across all nine
 865 combinations of frequency and evaluation scenarios. While the audio-inertial model performance
 866 still decreases as audio quality decreases, the drop in model performance is not as significant as
 867 the performance drop in the audio-only model. Therefore, the addition of the inertial modality
 868 shows that IMU data can effectively supplement information lost in downgraded audio for detecting
 869 conversations. The combined audio and inertial framework is more robust to low-quality audio,
 870 and this finding can be leveraged to perform audio sensing at a lower sampling rate to maintain
 871 user privacy.

872 7.4 Validating the Challenge of Dynamic Environments for Conversation Detection

873 To better understand the model developed using our dataset in context with models developed on
 874 previous acoustic smartwatch datasets for conversations, we evaluated the trained model presented
 875 by Liang *et al.* [29] on the audio in our collected dataset. Their study collected a *semi-naturalistic*
 876 dataset with 32 hours of audio recorded in 18 homes while all household members engaged in a set
 877 of scripted activities and a *free-living* dataset with 45 hours of audio recorded by 4 individuals in
 878 real-world settings without any activity constraints. Both datasets were recorded using smartwatch
 879 microphones as well. Notably, only their *semi-naturalistic* dataset from home environments was
 880

		Lab Only			Semi-Naturalistic Only		
		Background Noise	Other Speech	Conversation	Background Noise	Other Speech	Conversation
True Label	Background Noise	0.91	0.02	0.07	0.62	0.06	0.32
	Other Speech	0.20	0.28	0.53	0.14	0.18	0.69
	Conversation	0.03	0.08	0.90	0.03	0.08	0.89
	Background Noise			Conversation	Background Noise		
	Other Speech			Conversation	Other Speech		
	Predicted Label				Predicted Label		

Fig. 12. Confusion matrices from inference of the pre-trained audio model on our collected dataset. Left: Inference on data collected in *lab* settings (groups 1-4). Right: Inference on data collected in *semi-naturalistic* settings (groups 5-11).

used to train their acoustic model while both their *semi-naturalistic* and *free-living* datasets were used for model evaluation. On their *semi-naturalistic* dataset, their model achieved a macro-F1 score of 76.2% and on their *free-living* dataset, they achieved a macro-F1 score of 89.2%.

We leverage their model for inference only on both our *lab*-only and *semi-naturalistic*-only datasets. As seen in Figure 12, their pre-trained model performs better on our *lab* dataset (macro F1-score 68.7%) than our *semi-naturalistic* dataset (macro F1-score 52.3%). This gap in performance between their datasets and our datasets emphasizes the acoustic difficulty of the environments in which we collected our datasets.

Using their pre-trained model, the *other speech* class is significantly confused with the *conversation* class across both our *lab* and *semi-naturalistic* datasets. In our *semi-naturalistic* dataset, conversations from passersby in the environment also resulted in *background noise* confused with *conversation*. Overall, this dataset comparison demonstrates a domain shift in the data where the training distribution (i.e., their *semi-naturalistic* dataset from quieter home environments) differs from the test distribution (i.e., our *semi-naturalistic* dataset from public, noisy environments). This again highlights the uniqueness of our dataset and investigation of conversation detection in dynamic environments, which has been unexplored by previous datasets and studies.

7.5 Participant Handedness and Data Collection

As previously discussed, to increase the ecological validity of the data collection study, participants were free to wear the smartwatch on either wrist. As seen in Table 2, an overwhelming majority of participants were right-hand dominant and chose to wear the watch on their non-dominant left hand. However, during the study, it was observed that participants primarily gestured with their dominant hand, which aligns with previous studies on the relationship between gesturing and handedness [9]. Therefore, many participant gestures are not captured in the recorded inertial data. While the multimodal architecture is already an improvement from the baseline single-modality classifiers, inertial data from participants' dominant hand could help further clarify social activities, especially in noisy settings, with greater accuracy.

8 MODEL DEPLOYMENT

As previously mentioned, we used one Fossil Gen 4 smartwatch and one Fossil Gen 5 smartwatch as data collection devices. The Gen 4 smartwatch has 512MB RAM and 4GB storage while the Gen 5 smartwatch has 1GB RAM and 8GB storage. Compared to smartphones or other edge devices

932 like Raspberry Pis, smartwatches have significantly fewer computational resources. Despite these
 933 computational limitations of smartwatches, we demonstrate that our conversation detection model
 934 can deploy to smartwatches in this section. As will be discussed in section 8.2, we focus our model
 935 deployment discussion on the Pure-Acoustic Model with SCNNB architecture after discovering
 936 hardware limitations in the smartwatches to support the Pure-Acoustic Model with CNN+Attention
 937 model architecture.

938 8.1 Model Optimization

940 To facilitate model deployment, we optimized the model through quantization-aware training and
 941 weight pruning. With quantization-aware training, we lower the precision of model parameters
 942 from 32-bit float representations to 8-bit integer representations by introducing quantization effects
 943 during model training such that the trained model is more robust to the loss in weight precision.
 944 We additionally prune 50% of the parameters per layer to remove insignificant parameters and
 945 obtain a sparser model. Rather than training from scratch, we fine-tuned the pre-trained weights
 946 of the Pure-Acoustic Model with SCNNB model. For comparison to the Pure-Acoustic Model,
 947 we also optimize the audio-only model in the same manner. We evaluate the optimized model
 948 performance with the *lab and semi-naturalistic* LOGO evaluation setup and show the results in
 949 Table 6. We observe that the joint audio-inertial optimized model achieves a performance similar
 950 to its pre-optimization performance and still outperforms the optimized, audio-only model.

951 8.2 Deployment to Smartwatches

953 We converted both optimized models to TensorFlow Lite (TFLite), a data format that allows models
 954 to run on edge devices. We then developed an Android application using Java to load and invoke the
 955 model on the smartwatches. During this process, we discovered that some operations required for
 956 the attention mechanism are not supported by the hardware in the Fossil Gen 4 and 5 smartwatches.
 957 Therefore, we focused on deployment of the optimized Pure-Acoustic Model with SCNNB model as
 958 the joint audio-inertial model. Additionally, while the audio-inertial model can run on both the
 959 Fossil Gen 4 and 5 smartwatches, we focus our deployment analysis on the Gen 5 smartwatch as it
 960 is newer than the Gen 4 smartwatch (2019 vs 2018) and has double the RAM.

961 We profile the inference time of both the audio-only and joint audio-inertial models to understand
 962 the potential real-time applications our system. We summarize the TFLite size and average inference
 963 times of both models while running on the Fossil Gen 5 smartwatch in Table 6. The average inference
 964 time is measured across 10 successive invocations of the model on the smartwatch.

965 As many smartwatches have been released since the Fossil Gen 5 smartwatch in 2019, we also
 966 profiled the model's inference time on a newer smartwatch, the Google Pixel Watch 2 released in
 967 2023. With 2GB RAM, the average inference time of the joint audio-inertial model is reduced by over
 968 a factor of two down to 400ms. Furthermore, this smartwatch hardware supports the Pure-Acoustic
 969 Model with CNN+Attention model architecture with a similar runtime to the Pure-Acoustic Model
 970 with SCNNB model.

971 8.3 Cost-Benefit Analysis

973 We conducted a cost-benefit analysis on model performance and smartwatch battery life of the
 974 Fossil Gen 5 as a function of audio and IMU sampling rates. Although for audio privacy measures we
 975 downsampled the audio to 1kHz, the Fossil smartwatches used in data collection are limited to 4kHz
 976 as the lowest microphone sampling rate. We compare the results of audio and IMU sampling rate
 977 combinations in Table 7. We report the F1-score of the Pure-Acoustic+SCNNB model. As observed
 978 in the table, the additional IMU modality in the joint audio-inertial model provides a statistically
 979 significant improvement to the detection of conversations compared to the audio-only model.

981 Table 6. Comparison of the performance, size, and inference time on a Fossil Gen 5 smartwatch of the
982 optimized audio-only and audio-inertial models.

984 Model	985 F1-score	986 TFLite Size (kB)	987 Inference Time on Smartwatch (ms)
988 Optimized Pure-Acoustic Model	989 74.6 ± 2.0	989 831	988 953.6
990 Optimized Pure-Acoustic Model + SCNNB	991 77.3 ± 1.8	991 857	990 972.5

991 Table 7. We profile the battery life of a Fossil Gen 5 smartwatch and model performance with varying audio
992 and IMU sampling rates. Battery life is measured by the duration of data collection on the smartwatch using
993 our data collection app until the battery is fully exhausted from one single, full charge. The IMU-only model
994 is the SCNNB network and the joint audio-IMU model is the Pure-Acoustic Model with SCNNB model. We
995 report the F1-score of the models in the L+SN-LOGO evaluation scheme.

997 Modality	998 Audio Sampling Rate (kHz)	999 IMU Sampling Rate (Hz)	1000 Battery Life	1001 Model Performance (F1 score)
1001 Audio-only	16	-	5hrs 29min	73.0 ± 2.0
	4	-	6hrs 54min	74.6 ± 2.0
	-	50	4hrs 26min	53.6 ± 2.3
1003 IMU-only	-	25	5hrs 28min	52.9 ± 2.5
	-	10	7hrs 6min	49.6 ± 4.3
	16	50	3hrs 44min	78.0 ± 1.7
1008 Audio+IMU	16	25	4hrs 18min	75.9 ± 2.0
	16	10	5hrs 49min	72.6 ± 2.2
	4	50	4hrs 55min	78.0 ± 2.0
	4	25	5hrs 45min	77.2 ± 1.8
	4	10	6hrs 40min	76.5 ± 2.0

1012 However, we note that this benefit comes at a cost of 1.75 hours of reduced smartwatch battery life.
1013 Interestingly, we note that the model performs better with 4kHz audio compared to 16kHz audio.
1014 In listening to the audio downsampled to 4kHz, we hypothesize this is due to foreground voices
1015 still being audible and discernible but background speech becoming more distorted at 4kHz.
10161017

9 APPLICATIONS

1018 Practical recognition of social interactions will enable a wide range of new applications including,
1019 but not limited to, organizational behavior, health and wellness, and augmented reality domains. In
1020 this section, we further expand on applications of automatic conversation detection and discuss
1021 the extent to which our framework is suitable for these applications in light of our results.
10221023

- 1024 **Team Dynamics** The proposed system offers insights into team dynamics. Inclusive team
1025 dialogues, characterized by different team members contributing in succession, correlate
1026 positively to better team skill use and task strategy and lead to improved overall performance
1027 [18]. Therefore, our proposed system can identify the extremes of team discussions, whether
1028 someone is dominating the conversation or not speaking at all, and can allow teams to
1029 review their communication, coordination, and cohesion.

1030
1031 • **Loneliness and Social Isolation** Social isolation is as significant of a risk factor for health
1032 outcomes as traditional risk factors such as obesity [41]. After medical events such as
1033 experiencing a stroke, individuals' social networks decline and become less diverse [21].
1034 Therefore, the proposed social interaction sensor can allow physicians and care providers
1035 to better support and understand the relationship between patients who have experienced
1036 such medical events and patient outcomes.

1037 • **Social Diary** Detecting social interactions allows individuals to maintain logs of their daily
1038 social interactions. The user can capture information, such as time and duration of their daily
1039 interactions, giving users a comprehensive view of their social activities. Longitudinally,
1040 these social diaries can increase speakers' self-awareness of their social interactions and
1041 identify potential patterns of isolation.

1042 At its current performance, our approach to sensing social interactions in noisy environments is
1043 suitable for these applications to a certain extent. To understand broad trends of team dynamics or
1044 loneliness and social isolation, the current framework could be acceptable. For other applications
1045 that require specific precision and recall to detect subtle nuances in conversation dynamics for
1046 enabling high-fidelity health analyses for instance, our system may need to be fine-tuned to the
1047 specific application context or improved with additional features discussed in the following section.
1048 Overall, though, our system represents a significant first step towards realizing these applications.

1049 10 LIMITATIONS AND FUTURE WORK

1050 While our work demonstrates the capabilities of smartwatch social sensing in naturalistic noisy
1051 settings, it is important to highlight its limitations and discuss future opportunities. First, though
1052 we evaluated our framework on a *semi-naturalistic* dataset collected in real-world acoustic settings,
1053 we did not evaluate the framework on an *in-the-wild* dataset where participants were unsupervised
1054 in their activities. In real-world settings, people can multitask, such as walking or driving, while
1055 engaged in a conversation. These activities that overlap with conversations, especially these
1056 activities that also have accompanying hand, arm, or wrist gestures, may create confusion with
1057 conversation-related gestures. Secondly, while we collected data from 35 participants with diverse
1058 gender and cultural representation, all participants were between the ages of 20-30 years old.
1059 Additional participants with more diversity in age would enhance the external validity of our
1060 results, since non-verbal and verbal communication vary across ages [15]. We intend to address
1061 these limitations in future work to improve upon the current system.

1062 Additionally, while speech processing tools alone are not currently suitable for social interaction
1063 analysis, they can extract information that can assist in further characterizing conversations.
1064 For instance, *pyannote.audio* can perform speaker diarization and detect overlapping speech. By
1065 segmenting audio according to who spoke when, the information gained through speaker diarization
1066 could improve classification of the *conversation* and *other speech* classes. However, it is important to
1067 note that many speech processing tools have primarily been developed on datasets from controlled
1068 environments such as LibriSpeech [40] and Switchboard [17], which come from audiobooks and
1069 telephone calls respectively. Therefore, these tools alone have limited applicability to detecting
1070 in-person conversations in acoustically challenging environments. However, coupled with our
1071 framework, these tools can contribute additional analyses such as characterization of speech
1072 overlaps that are of interest to the field of conversation analysis [20].

1073 11 CONCLUSION

1074 We present the first joint acoustic-inertial sensing framework using off-the-shelf smartwatches for
1075 recognizing conversations. We demonstrate the benefits of inertial data in capturing non-verbal

1079 behaviors during in-person communication to aid acoustic sensing. To validate this framework,
 1080 we collected two datasets: (1) a *lab* dataset with 11 participants split into 4 groups performing
 1081 5 supervised group activities and (2) a *semi-naturalistic* dataset with 24 participants split into 7
 1082 groups performing the same group activities in acoustically challenging environments. Through a
 1083 broad set of evaluations, we show the advantages of multimodal sensing for conversation detection
 1084 in acoustically-challenging environments, which has been previously unexplored. Furthermore, we
 1085 demonstrate the advantages of inertial data in aiding model performance across activity contexts
 1086 and low-quality audio. This work advances the development of high-performing conversation
 1087 detection systems by utilizing everyday wrist-worn devices to analyze both acoustic and inertial
 1088 data. Our framework opens the door for building future systems for more fine-grained analyses of
 1089 social dynamics for applications towards individual well-being, organizational behavior and more.
 1090

1091 REFERENCES

- [1] Alireza Abedin, Mahsa Ehsanpour, Qinfeng Shi, Hamid Rezatofighi, and Damith C. Ranasinghe. 2021. Attend and Discriminate: Beyond the State-of-the-Art for Human Activity Recognition Using Wearable Sensors. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* 5, 1, Article 1 (mar 2021), 22 pages. <https://doi.org/10.1145/3448083>
- [2] Apple. 2023. AirPods redefine the personal audio experience. <https://www.apple.com/newsroom/2023/06/airpods-redefine-the-personal-audio-experience/> Accessed: 2023-12-19.
- [3] Rumman Bari, Roy J. Adams, Md. Mahbubur Rahman, Megan Battles Parsons, Eugene H. Buder, and Santosh Kumar. 2018. rConverse: Moment by Moment Conversation Detection Using a Mobile Respiration Sensor. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* 2, 1, Article 2 (mar 2018), 27 pages. <https://doi.org/10.1145/3191734>
- [4] Rumman Bari, Md. Mahbubur Rahman, Nazir Saleheen, Megan Battles Parsons, Eugene H. Buder, and Santosh Kumar. 2020. Automated Detection of Stressful Conversations Using Wearable Physiological and Inertial Sensors. 4, 4, Article 117 (dec 2020), 23 pages. <https://doi.org/10.1145/3432210>
- [5] Janet Bavelas and Jennifer Gerwing. 2007. *Conversational hand gestures and facial displays in face-to-face dialogue.* 283–308.
- [6] Vincent Becker, Linus Fessler, and Gábor Sörös. 2019. GestEar: combining audio and motion sensing for gesture recognition on smartwatches. In *2019 ISWC (London, United Kingdom) (ISWC '19)*. ACM, New York, NY, USA, 10–19. <https://doi.org/10.1145/3341163.3347735>
- [7] Sarnab Bhattacharya, Rebecca Adaimi, and Edison Thomaz. 2022. Leveraging Sound and Wrist Motion to Detect Activities of Daily Living with Commodity Smartwatches. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* 6, 2, Article 42 (jul 2022), 28 pages. <https://doi.org/10.1145/3534582>
- [8] Hervé Bredin. 2023. pyannote.audio 2.1 speaker diarization pipeline: principle, benchmark, and recipe. In *Proc. INTERSPEECH 2023*.
- [9] Esra Nur Çatak, Alper Açıkg, and Tilbe Göksun. 2018. The relationship between handedness and valence: A gesture study. *Quarterly Journal of Experimental Psychology* 71, 12 (2018), 2615–2626. <https://doi.org/10.1177/1747021817750110> arXiv:<https://doi.org/10.1177/1747021817750110> PMID: 29355469.
- [10] Ciro Cattuto, Wouter Van den Broeck, Alain Barrat, Vittoria Colizza, Jean-François Pinton, and Alessandro Vespignani. 2010. Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks. *PLOS ONE* 5, 7 (07 2010), 1–9. <https://doi.org/10.1371/journal.pone.0011596>
- [11] Metod Celestina, Jan Hrovat, and Chucrī A. Kardous. 2018. Smartphone-based sound level measurement apps: Evaluation of compliance with international sound level meter standards. *Applied Acoustics* 139 (2018), 119–128. <https://doi.org/10.1016/j.apacoust.2018.04.011>
- [12] Tanzeem Choudhury and Alex Pentland. 2003. Sensing and Modeling Human Networks. (01 2003).
- [13] International Noise Awareness Day. 2024. <https://noiseawareness.org/info-center/common-noise-levels/> Accessed: 2024-09-05.
- [14] Susan Kay Donaldson. 1979. One Kind of Speech Act: How Do We Know When We ?Re Conversing?? *Semiotica* 28, 3-4 (1979). <https://doi.org/10.1515/semi.1979.28.3-4.259>
- [15] R.S. Feldman and J.M. Tyler. 2006. *Factoring in age: Nonverbal communication across the life span.* 181–200. <https://doi.org/10.4135/9781412976152.n10>
- [16] Georgi Gerganov. 2023. whisper.cpp. <https://github.com/ggerganov/whisper.cpp>.
- [17] John J. Godfrey, Edward C. Holliman, and Jane McDaniel. 1992. SWITCHBOARD: telephone speech corpus for research and development. In *1992 ICASSP (San Francisco, California) (ICASSP'92)*. IEEE Computer Society, USA, 517–520.
- [18] Ki-Won Haan, Christoph Riedl, and Anita Woolley. 2021. Discovering Where We Excel: How Inclusive Turn-Taking in Conversations Improves Team Performance. In *2021 ICMI (Montreal, QC, Canada) (ICMI '21 Companion)*. ACM, New

1127

1128 York, NY, USA, 278–283. <https://doi.org/10.1145/3461615.3485417>

1129 [19] Jay Hall and W. H. Watson. 1970. The Effects of a Normative Intervention on Group Decision-Making Performance. *Human Relations* 23, 4 (1970), 299–317. <https://doi.org/10.1177/001872677002300404>

1130 [20] Mattias Heldner and Jens Edlund. 2010. Pauses, gaps and overlaps in conversations. *Journal of Phonetics* 38 (10 2010), 1131 555–568. <https://doi.org/10.1016/j.wocn.2010.08.002>

1132 [21] Katerina Hilari and Sarah Northcott. 2016. “Struggling to stay connected”: comparing the social relationships of 1133 healthy older people and people with stroke and aphasia. *Aphasiology* (08 2016), 1–14. <https://doi.org/10.1080/02687038.2016.1218436>

1134 [22] Judith Holler, Kobi H. Kendrick, Marisa Casillas, and Stephen C. Levinson (Eds.). 2016. *Turn-Taking in Human 1135 Communicative Interaction*. Frontiers Media S.A., Lausanne. <https://eprints.whiterose.ac.uk/116190/>

1136 [23] Chiao-Yin Hsiao, Wan-Rong Jih, and Jane Hsu. 2012. Recognizing Continuous Social Engagement Level in Dyadic 1137 Conversation by Using Turn-taking and Speech Emotion Patterns.

1138 [24] Hyunchoong Kim, Jonghoon Shin, Soohwan Kim, Yohan Ko, Kyoungwoo Lee, Hojung Cha, Seong Il Hahm, and Taejun 1139 Kwon. 2017. Collaborative classification for daily activity recognition with a smartwatch (*2016 IEEE International 1140 Conference on Systems, Man, and Cybernetics*). Institute of Electrical and Electronics Engineers Inc., 3707–3712. <https://doi.org/10.1109/SMC.2016.7844810>

1141 [25] Youngki Lee, Chulhong Min, Chanyou Hwang, Jaeung Lee, Inseok Hwang, Younghyun Ju, Chungkuk Yoo, Miri Moon, 1142 Uichin Lee, and Junehwa Song. 2013. SocioPhone: Everyday face-to-face interaction monitoring platform using 1143 multi-phone sensor fusion. *MobiSys* 2013, 375–388. <https://doi.org/10.1145/2462456.2465426>

1144 [26] Fangyuan Lei, Xun Liu, Qingyun Dai, and Bingo Ling. 2020. Shallow convolutional neural network for image 1145 classification. *SN Applied Sciences* 2 (01 2020). <https://doi.org/10.1007/s42452-019-1903-4>

1146 [27] Qiang Li, Shanshan Chen, and John Stankovic. 2013. Multi-modal in-person interaction monitoring using smartphone 1147 and on-body sensors. *2013 IEEE International Conference on Body Sensor Networks, BSN 2013*, 1–6. <https://doi.org/10.1109/BSN.2013.6575509>

1148 [28] Dawei Liang, Guihong Li, Rebecca Adaimi, Radu Marculescu, and Edison Thomaz. 2022. AudioIMU: Enhancing Inertial 1149 Sensing-Based Activity Recognition with Acoustic Models. In *2022 ISWC* (Cambridge, United Kingdom) (*ISWC '22*). 1150 ACM, New York, NY, USA, 44–48. <https://doi.org/10.1145/3544794.3558471>

1151 [29] Dawei Liang, Alice Zhang, and Edison Thomaz. 2023. Automated Face-To-Face Conversation Detection on a Commodity 1152 Smartwatch with Acoustic Sensing. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* 7, 3, Article 109 (Sept 2023), 1153 29 pages. <https://doi.org/10.1145/3610882>

1154 [30] Chengwen Luo and Mun Chan. 2013. SocialWeaver: Collaborative inference of human conversation networks using 1155 smartphones. (11 2013), 14. <https://doi.org/10.1145/2517351.2517353>

1156 [31] Aleksandar Matic, Venet Osmani, and Oscar Mayora. 2013. *Automatic Sensing of Speech Activity and Correlation with 1157 Mood Changes*. 195–205. https://doi.org/10.1007/978-3-642-32538-0_9

1158 [32] David Matsumoto and Hyisung Hwang. 2016. *The cultural bases of nonverbal communication*. 77–101. <https://doi.org/10.1037/14669-004>

1159 [33] Albert Mehrabian. 1972. *Nonverbal Communication*. Routledge.

1160 [34] Emiliano Miluzzo, Cory T. Cornelius, Ashwin Ramaswamy, Tanzeem Choudhury, Zhigang Liu, and Andrew T. Campbell. 1161 2010. Darwin Phones: The Evolution of Sensing and Inference on Mobile Phones. In *Proceedings of the 8th International 1162 Conference on Mobile Systems, Applications, and Services* (San Francisco, California, USA) (*MobiSys '10*). ACM, New 1163 York, NY, USA, 5–20. <https://doi.org/10.1145/1814433.1814437>

1164 [35] Vimal Mollyn, Karan Ahuja, Dhruv Verma, Chris Harrison, and Mayank Goel. 2022. SAMoSA: Sensing Activities with 1165 Motion and Subsampled Audio. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* 6, 3, Article 132 (sep 2022), 1166 19 pages. <https://doi.org/10.1145/3550284>

1167 [36] Debbie S Moskowitz and Simon N Young. 2006. Ecological momentary assessment: what it is and why it is a method 1168 of the future in clinical psychopharmacology. *J. Psychiatry Neurosci.* 31, 1 (Jan. 2006), 13–20.

1169 [37] Amrutha Nadarajan, Krishna Somandepalli, and Shrikanth S. Narayanan. 2019. Speaker Agnostic Foreground Speech 1170 Detection from Audio Recordings in Workplace Settings from Wearable Recorders. *2019 ICASSP* (2019), 6765–6769. 1171 <https://api.semanticscholar.org/CorpusID:145905315>

1172 [38] Daniel Olgun Olgun, Benjamin N. Waber, Taemie Kim, Akshay Mohan, Koji Ara, and Alex Pentland. 2009. Sensible 1173 Organizations: Technology and Methodology for Automatically Measuring Organizational Behavior. *IEEE Transactions 1174 on Systems, Man, and Cybernetics, Part B (Cybernetics)* 39, 1 (2009), 43–55. <https://doi.org/10.1109/TSMCB.2008.2006638>

1175 [39] World Health Organization. 2021. Social isolation and loneliness among older people: advocacy brief. <https://www.decadeofhealthyaging.org/find-knowledge/resources/publications/un-decade-of-healthy-ageing-advocacy-brief-social-isolation-and-loneliness-among-older-people> Accessed: 2023-12-19.

1176 [40] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015. Librispeech: An ASR corpus based on 1177 public domain audio books. In *2015 ICASSP*. 5206–5210. <https://doi.org/10.1109/ICASSP.2015.7178964>

1177 [41] Matthew Pantell, David Rehkopf, Douglas Jutte, S Leonard Syme, John Balmes, and Nancy Adler. 2013. Social isolation:
 1178 a predictor of mortality comparable to traditional clinical risk factors. *Am. J. Public Health* 103, 11 (Nov. 2013),
 1179 2056–2062.

1180 [42] Maciej Pawłowski, Anna Wróblewska, and Sylwia Sysko-Romańcuk. 2023. Effective Techniques for Multimodal Data
 Fusion: A Comparative Analysis. *Sensors* 23, 5 (2023). <https://doi.org/10.3390/s23052381>

1181 [43] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. 2022. Robust Speech
 1182 Recognition via Large-Scale Weak Supervision. <https://doi.org/10.48550/ARXIV.2212.04356>

1183 [44] Md Rahman, Amin Ali, Kurt Plarre, Mustafa al'Absi, Emre Ertin, and Santosh Kumar. 2011. MConverse: Inferring
 1184 conversation episodes from respiratory measurements collected in the field. *Proceedings - Wireless Health 2011, WH'11*,
 1185 10. <https://doi.org/10.1145/2077546.2077557>

1186 [45] Mary Redmayne. 2017. Where's Your Phone? A Survey of Where Women Aged 15-40 Carry Their Smartphone and
 1187 Related Risk Perception: A Survey and Pilot Study. *PLOS ONE* 12 (01 2017), e0167996. <https://doi.org/10.1371/journal.pone.0167996>

1188 [46] Harry T. Reis and Ladd Wheeler. 1991. *Studying Social Interaction with the Rochester Interaction Record*. Elsevier,
 1189 269–318. [https://doi.org/10.1016/s0065-2601\(08\)60332-9](https://doi.org/10.1016/s0065-2601(08)60332-9)

1190 [47] Sujiya S and Dr.Chandra E. 2017. A Review on Speaker Recognition. *International Journal of Engineering and Technology*
 1191 9 (06 2017), 1592–1598. <https://doi.org/10.2181/ijet/2017/v9i3/170903513>

1192 [48] Harvey Sacks, Emanuel Schegloff, and Gail Jefferson. 1974. A Simple Systematic for the Organisation of Turn Taking
 in Conversation. *Language* 50 (12 1974), 696–735. <https://doi.org/10.2307/412243>

1193 [49] Florian Schiel, Christoph Draxler, Angela Baumann, Tania Ellbogen, and Alex T. Steffen. 2012. The Production of
 1194 Speech Corpora. <https://api.semanticscholar.org/CorpusID:61111457>

1195 [50] Nabeel Siddiqui and Rosa Chan. 2020. Multimodal hand gesture recognition using single IMU and acoustic measure-
 1196 ments at wrist. *PLOS ONE* 15 (01 2020), e0227039. <https://doi.org/10.1371/journal.pone.0227039>

1197 [51] NIOSH Hearing Loss Prevention Team. 2019. *NIOSH Sound Level Meter Application (app) for iOS devices*.

1198 [52] Dipanwita Thakur and Suparna Biswas. 2021. Feature fusion using deep learning for smartphone based human activity
 1199 recognition. *International Journal of Information Technology* 13 (06 2021). <https://doi.org/10.1007/s41870-021-00719-6>

1200 [53] Yonatan Vaizman, Katherine Ellis, Gert Lanckriet, and Nadir Weibel. 2018. ExtraSensory App: Data Collection
 1201 In-the-Wild with Rich User Interface to Self-Report Behavior. In *2018 CHI (CHI '18)*. ACM, New York, NY, USA, 1–12.
<https://doi.org/10.1145/3173574.3174128>

1202 [54] Yonatan Vaizman, Nadir Weibel, and Gert Lanckriet. 2018. Context Recognition In-the-Wild: Unified Model for
 1203 Multi-Modal Sensors and Multi-Label Classification. *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.* 1 (01 2018),
 1204 1–22. <https://doi.org/10.1145/3161192>

1205 [55] Martin Warren. 2006. *Features of Naturalness in Conversation*. <https://doi.org/10.1075/pbns.152>

1206 [56] Gary Weiss, Jeffrey Lockhart, Tony Pulickal, Paul McHugh, Isaac Ronan, and Jessica Timko. 2016. Actitracker: A
 1207 Smartphone-Based Activity Recognition System for Improving Health and Well-Being. 682–688. <https://doi.org/10.1109/DSAA.2016.89>

1208 [57] Kelly White, Samuel Tate, Ros Zafonte, Shrikanth Narayanan, Matthias Mehl, Min Shin, and Amar Dhand. 2023.
 1209 SocialBit: protocol for a prospective observational study to validate a wearable social sensor for stroke survivors with
 1210 diverse neurological abilities. *BMJ Open* 13, 8. <https://doi.org/10.1136/bmjopen-2023-076297>

1211 [58] Peter Wittenburg, Hennie Brugman, Albert Russel, Alex Klassmann, and Han Sloetjes. 2006. ELAN: a Professional
 1212 Framework for Multimodality Research. In *5th International Conference on Language Resources and Evaluation (LREC
 1213 2006)*, Nicoletta Calzolari, Khalid Choukri, Aldo Gangemi, Bente Maegaard, Joseph Mariani, Jan Odijk, and Daniel
 1214 Tapias (Eds.). European Language Resources Association (ELRA), Genoa, Italy, 1556–1559. http://www.lrec-conf.org/1215 proceedings/lrec2006/pdf/153_pdf.pdf

1216 [59] Chenren Xu, Sugang Li, Gang Liu, Yanyong Zhang, Emiliano Miluzzo, Yih-Farn Chen, Jun Li, and Bernhard Firner.
 1217 2013. Crowd++: unsupervised speaker count with smartphones. In *2013 UbiComp (Zurich, Switzerland) (UbiComp '13)*.
 1218 ACM, New York, NY, USA, 43–52. <https://doi.org/10.1145/2493432.2493435>

1219 [60] Ruiqing Yin, Hervé Bredin, and Claude Barras. 2017. Speaker Change Detection in Broadcast TV using Bidirectional
 1220 Long Short-Term Memory Networks. In *2017 INTERSPEECH*. Stockholm, Sweden. https://github.com/yinruiqing/1221 change_detection

1221 [61] Huanle Zhang, Wan Du, Pengfei Zhou, Mo Li, and Prasant Mohapatra. 2016. DopEnc: Acoustic-Based Encounter
 1222 Profiling Using Smartphones. In *2016 MobiCom (New York City, New York) (MobiCom '16)*. ACM, New York, NY, USA,
 1223 294–307. <https://doi.org/10.1145/2973750.2973775>

1224

1225